Worksheet for 2020-04-29

Problems

Problem 1. Throughout this problem, let H denote the plane $z=2 x+4$.
(a) Let $\mathbf{F}=\langle 3 y z, x z, x y-y z\rangle$. Show that if C is any oriented simple closed curve contained in the plane H, then $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=0$, regardless of C.
(b) Let $\mathbf{G}=\left\langle x^{2} y-y, 0, y^{3} / 6\right\rangle$. If we let D to be any simple closed curve contained in the plane H which is oriented counterclockwise when viewed from above, find the maximum possible value of the integral $\int_{D} \mathbf{G} \cdot \mathrm{dr}$.
Problem 2. Use Stokes' theorem to evaluate $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$ where $\mathbf{F}=\left\langle x^{2} y, \frac{1}{3} x^{3}, x y\right\rangle$ and C is the curve of intersection of the hyperbolic paraboloid $z=y^{2}-x^{2}$ and the cylinder $x^{2}+y^{2}=1$.
Problem 3. Consider the cone $z=\sqrt{x^{2}+y^{2}}, z \leq 9$, oriented upwards. Use the divergence theorem to evaluate the flux of $\langle x, 0,0\rangle$ through the cone. Note that the cone is not a closed surface.

Problem 4. On a previous worksheet, we did the following problems by direct computation:
(a) Compute the flux of the vector field $\mathbf{F}=\langle x, y, z\rangle$ through the sphere $x^{2}+y^{2}+z^{2}=9$ oriented outwards.
(b) Compute the flux of the vector field $\left\langle 0,0,4-z^{2}\right\rangle$ outwards through the closed cylinder with lateral side $x^{2}+y^{2}=10$ and lids $z=0$ and $z=2$.
Now do these problems again using the divergence theorem, and check that you get the same answers!

